Coloring uniform hypergraphs with few colors
نویسنده
چکیده
Let m(r, k) denote the minimum number of edges in an r-uniform hypergraph that is not k-colorable. We give a new lower bound on m(r, k) for fixed k and large r. Namely, we prove that if k 2, then m(r, k) (k)k(r/ln r) . © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 24: 1–10, 2004
منابع مشابه
Conflict-free Colorings of Uniform Hypergraphs with Few Edges
A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not repeat in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos proved that for an (2r − 1)-uniform hypergraph H with m edges, χCF (H) is at most of the order of rm lo...
متن کاملHarmonious and achromatic colorings of fragmentable hypergraphs
A harmonious coloring of a k-uniform hypergraphH is a rainbow vertex coloring such that each k-set of colors appears on at most one edge. A rainbow coloring of H is achromatic if each k-set of colors appears on at least one edge. The harmonious (resp. achromatic) number of H , denoted by h(H) (resp. ψ(H)) is the minimum (resp. maximum) possible number of colors in a harmonious (resp. achromatic...
متن کاملReducing uniformity in Khot-Saket hypergraph coloring hardness reductions
In a recent result, Khot and Saket [FOCS 2014] proved the quasi-NP-hardness of coloring a 2-colorable 12-uniform hypergraphwith 2 Ω(1) colors. This result was proved using a novel outer PCP verifier which had a strong soundness guarantee. In this note, we show that we can reduce the arity of their result by modifying their 12-query inner verifier to an 8-query inner verifier based on the hyperg...
متن کاملHardness for Hypergraph Coloring
We show that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 2(logN) 1/10−o(1) colors, where N is the number of vertices. There has been much focus on hardness of hypergraph coloring recently. In [17], Guruswami, H̊astad, Harsha, Srinivasan and Varma showed that it is quasi-NP-hard to color 2-colorable 8-uniform hypergraphs with 22Ω( √ log logN) colors. Their result is obtain...
متن کاملConflict-Free Colourings of Uniform Hypergraphs With Few Edges
A coloring of the vertices of a hypergraph H is called conflict-free if each edge e of H contains a vertex whose color does not get repeated in e. The smallest number of colors required for such a coloring is called the conflict-free chromatic number of H, and is denoted by χCF (H). Pach and Tardos studied this parameter for graphs and hypergraphs. Among other things, they proved that for an (2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 24 شماره
صفحات -
تاریخ انتشار 2004